Tutorial: Action Masking

Introduction

In many environments, it is natural for some actions to be invalid at certain times. For example, in a game of chess, it is impossible to move a pawn forward if it is already at the front of the board. In PettingZoo, we can use action masking to prevent invalid actions from being taken.

Action masking is a more natural way of handling invalid actions than having an action have no effect, which was how we handled bumping into walls in the previous tutorial.

Code

/custom-environment/env/custom_environment.py
import functools
import random
from copy import copy

import numpy as np
from gymnasium.spaces import Discrete, MultiDiscrete

from pettingzoo import ParallelEnv


class CustomActionMaskedEnvironment(ParallelEnv):
    """The metadata holds environment constants.

    The "name" metadata allows the environment to be pretty printed.
    """

    metadata = {
        "name": "custom_environment_v0",
    }

    def __init__(self):
        """The init method takes in environment arguments.

        Should define the following attributes:
        - escape x and y coordinates
        - guard x and y coordinates
        - prisoner x and y coordinates
        - timestamp
        - possible_agents

        Note: as of v1.18.1, the action_spaces and observation_spaces attributes are deprecated.
        Spaces should be defined in the action_space() and observation_space() methods.
        If these methods are not overridden, spaces will be inferred from self.observation_spaces/action_spaces, raising a warning.

        These attributes should not be changed after initialization.
        """
        self.escape_y = None
        self.escape_x = None
        self.guard_y = None
        self.guard_x = None
        self.prisoner_y = None
        self.prisoner_x = None
        self.timestep = None
        self.possible_agents = ["prisoner", "guard"]

    def reset(self, seed=None, options=None):
        """Reset set the environment to a starting point.

        It needs to initialize the following attributes:
        - agents
        - timestamp
        - prisoner x and y coordinates
        - guard x and y coordinates
        - escape x and y coordinates
        - observation
        - infos

        And must set up the environment so that render(), step(), and observe() can be called without issues.
        """
        self.agents = copy(self.possible_agents)
        self.timestep = 0

        self.prisoner_x = 0
        self.prisoner_y = 0

        self.guard_x = 7
        self.guard_y = 7

        self.escape_x = random.randint(2, 5)
        self.escape_y = random.randint(2, 5)

        observation = (
            self.prisoner_x + 7 * self.prisoner_y,
            self.guard_x + 7 * self.guard_y,
            self.escape_x + 7 * self.escape_y,
        )
        observations = {
            "prisoner": {"observation": observation, "action_mask": [0, 1, 1, 0]},
            "guard": {"observation": observation, "action_mask": [1, 0, 0, 1]},
        }

        # Get dummy infos. Necessary for proper parallel_to_aec conversion
        infos = {a: {} for a in self.agents}

        return observations, infos

    def step(self, actions):
        """Takes in an action for the current agent (specified by agent_selection).

        Needs to update:
        - prisoner x and y coordinates
        - guard x and y coordinates
        - terminations
        - truncations
        - rewards
        - timestamp
        - infos

        And any internal state used by observe() or render()
        """
        # Execute actions
        prisoner_action = actions["prisoner"]
        guard_action = actions["guard"]

        if prisoner_action == 0 and self.prisoner_x > 0:
            self.prisoner_x -= 1
        elif prisoner_action == 1 and self.prisoner_x < 6:
            self.prisoner_x += 1
        elif prisoner_action == 2 and self.prisoner_y > 0:
            self.prisoner_y -= 1
        elif prisoner_action == 3 and self.prisoner_y < 6:
            self.prisoner_y += 1

        if guard_action == 0 and self.guard_x > 0:
            self.guard_x -= 1
        elif guard_action == 1 and self.guard_x < 6:
            self.guard_x += 1
        elif guard_action == 2 and self.guard_y > 0:
            self.guard_y -= 1
        elif guard_action == 3 and self.guard_y < 6:
            self.guard_y += 1

        # Generate action masks
        prisoner_action_mask = np.ones(4, dtype=np.int8)
        if self.prisoner_x == 0:
            prisoner_action_mask[0] = 0  # Block left movement
        elif self.prisoner_x == 6:
            prisoner_action_mask[1] = 0  # Block right movement
        if self.prisoner_y == 0:
            prisoner_action_mask[2] = 0  # Block down movement
        elif self.prisoner_y == 6:
            prisoner_action_mask[3] = 0  # Block up movement

        guard_action_mask = np.ones(4, dtype=np.int8)
        if self.guard_x == 0:
            guard_action_mask[0] = 0
        elif self.guard_x == 6:
            guard_action_mask[1] = 0
        if self.guard_y == 0:
            guard_action_mask[2] = 0
        elif self.guard_y == 6:
            guard_action_mask[3] = 0

        # Action mask to prevent guard from going over escape cell
        if self.guard_x - 1 == self.escape_x:
            guard_action_mask[0] = 0
        elif self.guard_x + 1 == self.escape_x:
            guard_action_mask[1] = 0
        if self.guard_y - 1 == self.escape_y:
            guard_action_mask[2] = 0
        elif self.guard_y + 1 == self.escape_y:
            guard_action_mask[3] = 0

        # Check termination conditions
        terminations = {a: False for a in self.agents}
        rewards = {a: 0 for a in self.agents}
        if self.prisoner_x == self.guard_x and self.prisoner_y == self.guard_y:
            rewards = {"prisoner": -1, "guard": 1}
            terminations = {a: True for a in self.agents}
            self.agents = []

        elif self.prisoner_x == self.escape_x and self.prisoner_y == self.escape_y:
            rewards = {"prisoner": 1, "guard": -1}
            terminations = {a: True for a in self.agents}
            self.agents = []

        # Check truncation conditions (overwrites termination conditions)
        truncations = {"prisoner": False, "guard": False}
        if self.timestep > 100:
            rewards = {"prisoner": 0, "guard": 0}
            truncations = {"prisoner": True, "guard": True}
            self.agents = []
        self.timestep += 1

        # Get observations
        observation = (
            self.prisoner_x + 7 * self.prisoner_y,
            self.guard_x + 7 * self.guard_y,
            self.escape_x + 7 * self.escape_y,
        )
        observations = {
            "prisoner": {
                "observation": observation,
                "action_mask": prisoner_action_mask,
            },
            "guard": {"observation": observation, "action_mask": guard_action_mask},
        }

        # Get dummy infos (not used in this example)
        infos = {"prisoner": {}, "guard": {}}

        return observations, rewards, terminations, truncations, infos

    def render(self):
        """Renders the environment."""
        grid = np.zeros((8, 8), dtype=object)
        grid[self.prisoner_y, self.prisoner_x] = "P"
        grid[self.guard_y, self.guard_x] = "G"
        grid[self.escape_y, self.escape_x] = "E"
        print(f"{grid} \n")

    # Observation space should be defined here.
    # lru_cache allows observation and action spaces to be memoized, reducing clock cycles required to get each agent's space.
    # If your spaces change over time, remove this line (disable caching).
    @functools.lru_cache(maxsize=None)
    def observation_space(self, agent):
        # gymnasium spaces are defined and documented here: https://gymnasium.farama.org/api/spaces/
        return MultiDiscrete([7 * 7 - 1] * 3)

    # Action space should be defined here.
    # If your spaces change over time, remove this line (disable caching).
    @functools.lru_cache(maxsize=None)
    def action_space(self, agent):
        return Discrete(4)