Ice Hockey#

../../../_images/atari_ice_hockey.gif

This environment is part of the Atari environments. Please read that page first for general information.

Import

from pettingzoo.atari import ice_hockey_v2

Actions

Discrete

Parallel API

Yes

Manual Control

No

Agents

agents= ['first_0', 'second_0']

Agents

2

Action Shape

(1,)

Action Values

[0,17]

Observation Shape

(210, 160, 3)

Observation Values

(0,255)

Competitive game of control and timing.

When you are on offense you must pass the puck between your two players (you control the one with the puck) to get it past your opponent’s defense. On defense, you control the player directly in front of the puck. Both players must handle the rapid switches of control, while maneuvering around your opponent. If you score, you are rewarded +1, and your opponent -1.

Official ice hockey manual

Environment parameters#

Environment parameters are common to all Atari environments and are described in the base Atari documentation .

Action Space#

In any given turn, an agent can choose from one of 18 actions.

Action

Behavior

0

No operation

1

Fire

2

Move up

3

Move right

4

Move left

5

Move down

6

Move upright

7

Move upleft

8

Move downright

9

Move downleft

10

Fire up

11

Fire right

12

Fire left

13

Fire down

14

Fire upright

15

Fire upleft

16

Fire downright

17

Fire downleft

Version History#

  • v2: Minimal Action Space (1.18.0)

  • v1: Breaking changes to entire API (1.4.0)

  • v0: Initial versions release (1.0.0)

Usage#

AEC#

from pettingzoo.atari import ice_hockey_v2

env = ice_hockey_v2.env(render_mode="human")
env.reset(seed=42)

for agent in env.agent_iter():
    observation, reward, termination, truncation, info = env.last()

    if termination or truncation:
        action = None
    else:
        # this is where you would insert your policy
        action = env.action_space(agent).sample()

    env.step(action)
env.close()

Parallel#

from pettingzoo.atari import ice_hockey_v2

env = ice_hockey_v2.parallel_env(render_mode="human")
observations, infos = env.reset()

while env.agents:
    # this is where you would insert your policy
    actions = {agent: env.action_space(agent).sample() for agent in env.agents}

    observations, rewards, terminations, truncations, infos = env.step(actions)
env.close()

API#

class pettingzoo.atari.ice_hockey.ice_hockey.raw_env(**kwargs)[source]#