Simple#
 
This environment is part of the MPE environments. Please read that page first for general information.
| Import | 
 | 
|---|---|
| Actions | Discrete/Continuous | 
| Parallel API | Yes | 
| Manual Control | No | 
| Agents | 
 | 
| Agents | 1 | 
| Action Shape | (5) | 
| Action Values | Discrete(5)/Box(0.0, 1.0, (5,)) | 
| Observation Shape | (4) | 
| Observation Values | (-inf,inf) | 
| State Shape | (4,) | 
| State Values | (-inf,inf) | 
In this environment a single agent sees a landmark position and is rewarded based on how close it gets to the landmark (Euclidean distance). This is not a multiagent environment, and is primarily intended for debugging purposes.
Observation space: [self_vel, landmark_rel_position]
Arguments#
simple_v3.env(max_cycles=25, continuous_actions=False)
max_cycles:  number of frames (a step for each agent) until game terminates
continuous_actions: Whether agent action spaces are discrete(default) or continuous
Usage#
AEC#
from pettingzoo.mpe import simple_adversary_v3
env = simple_adversary_v3.env(render_mode="human")
env.reset(seed=42)
for agent in env.agent_iter():
    observation, reward, termination, truncation, info = env.last()
    if termination or truncation:
        action = None
    else:
        # this is where you would insert your policy
        action = env.action_space(agent).sample()
    env.step(action)
env.close()
Parallel#
from pettingzoo.mpe import simple_adversary_v3
env = simple_adversary_v3.parallel_env(render_mode="human")
observations, infos = env.reset()
while env.agents:
    # this is where you would insert your policy
    actions = {agent: env.action_space(agent).sample() for agent in env.agents}
    observations, rewards, terminations, truncations, infos = env.step(actions)
env.close()
API#
- class pettingzoo.mpe.simple.simple.raw_env(max_cycles=25, continuous_actions=False, render_mode=None)[source]#
- action_spaces: dict[AgentID, gymnasium.spaces.Space]#
 - agent_selection: AgentID#
 - agents: list[AgentID]#
 - infos: dict[AgentID, dict[str, Any]]#
 - observation_spaces: dict[AgentID, gymnasium.spaces.Space]#
 - possible_agents: list[AgentID]#
 - rewards: dict[AgentID, float]#
 - terminations: dict[AgentID, bool]#
 - truncations: dict[AgentID, bool]#
 
