Simple#

../../../_images/mpe_simple.gif

This environment is part of the MPE environments. Please read that page first for general information.

Import

from pettingzoo.mpe import simple_v3

Actions

Discrete/Continuous

Parallel API

Yes

Manual Control

No

Agents

agents= [agent_0]

Agents

1

Action Shape

(5)

Action Values

Discrete(5)/Box(0.0, 1.0, (5,))

Observation Shape

(4)

Observation Values

(-inf,inf)

State Shape

(4,)

State Values

(-inf,inf)

In this environment a single agent sees a landmark position and is rewarded based on how close it gets to the landmark (Euclidean distance). This is not a multiagent environment, and is primarily intended for debugging purposes.

Observation space: [self_vel, landmark_rel_position]

Arguments#

simple_v3.env(max_cycles=25, continuous_actions=False)

max_cycles: number of frames (a step for each agent) until game terminates

continuous_actions: Whether agent action spaces are discrete(default) or continuous

API#

class pettingzoo.mpe.simple.simple.raw_env(max_cycles=25, continuous_actions=False, render_mode=None)[source]#

Uses the args and kwargs from the object’s constructor for pickling.

action_spaces: dict[AgentID, gymnasium.spaces.Space]#
agent_selection: AgentID#
agents: list[AgentID]#
infos: dict[AgentID, dict[str, Any]]#
observation_spaces: dict[AgentID, gymnasium.spaces.Space]#
possible_agents: list[AgentID]#
rewards: dict[AgentID, float]#
terminations: dict[AgentID, bool]#
truncations: dict[AgentID, bool]#